Ruchomej średniej serii modelowo czasowej
Przypis w Pankratz (1983). na stronie 48, mówi: Średnia średnica ruchoma etykiety jest technicznie nieprawidłowa, ponieważ współczynniki MA mogą być ujemne i nie mogą sumować się do jedności. Ta etykieta jest używana zgodnie z konwencją. Box i Jenkins (1976) również mówi coś podobnego. Na stronie 10: średnia ruchoma nazwy jest nieco myląca, ponieważ ciężary 1, - theta, - theta, ldots, - theta, które mnożą się jako, nie potrzebują całkowitej jedności ani nie potrzebują dodatniego. Ta nomenklatura jest jednak w powszechnym użyciu, dlatego też ją wykorzystujemy. Mam nadzieję, że to pomoże. Jeśli spojrzymy na proces zerowej średniej matematyki, to możesz uznać prawą rękę za zbliżoną do ważonej średniej ruchomej warunków wiruksylonu, ale gdzie masy nie sumują się do 1. Zauważ, że każda wartość yt może być traktowana jako ważona średnia ruchoma ostatnich kilku błędów prognozy. Podobne wyjaśnienia tego terminu można znaleźć w wielu innych miejscach. (Pomimo popularności tego wyjaśnienia, nie wiem na pewno, że jest to początek terminu, choć na przykład był to prawdopodobnie jakiś związek pomiędzy modelem a przeciętnym wygładzeniem). Zauważ, że Graeme Walsh podkreśla komentarze powyżej, że może to pochodzić z Slutsky (1927) Sumy losowych przyczyn jako źródła procesów cyklicznych 1 Hyndman, RJ i Athanasopoulos, G. (2017) Prognozowanie: zasady i praktyka. Sekcja 84. otextsfpp84. Dostęp do 22 września 2017. Istnieje wiele podejść do modeli szeregów czasowych. Poniżej przedstawiamy kilka najpopularniejszych metod. Trend, sezonowy, dekompozycja resztkowa Jednym ze sposobów jest rozkład wielu serii czasowych na trend, składnik sezonowy i resztkowy. Przykładem takiego podejścia jest wyrównywanie potrójnie wykładnicze. Inny przykład, zwany sezonowym lessem, oparty jest na lokalnie ważonych najmniejszych kwadratach i jest omawiany przez Cleveland (1993). W niniejszym podręczniku nie omawiamy sezonowości lessowej. Metody oparte na częstotliwościach Innym podejściem, powszechnie stosowanym w zastosowaniach naukowych i inżynierskich jest analiza serii w dziedzinie częstotliwości. Przykład tego podejścia w modelowaniu zbioru danych typu sinusoidalnego jest przedstawiony w badaniu przypadku odchylenia wiązki. Wykres spektralny jest podstawowym narzędziem do analizy częstotliwości serii czasowych. Modele autoregresywne (AR) Jednym ze sposobów modelowania jednowymiarowych serii czasowych jest autoregresywny model (AR): Xt delta phi1 X phi2 X cdots phip X At, gdzie (Xt) jest szeregiem czasów, (At) jest białym szumem, a delta lewy (1 - suma p phii po prawej) mu z (mu) oznaczając średnią procesu. Model autoregresyjny jest po prostu regresją liniową bieżącej wartości serii względem jednej lub więcej poprzednich wartości serii. Wartość (p) nazywa się kolejnością modelu AR. Modele AR można analizować za pomocą jednej z różnych metod, w tym standardowych technik liniowych najmniejszych kwadratów. Mają także prostą interpretację. Ruchome modele średnich (MA) Kolejnym podejściem do modelowania jednowymiarowych modeli szeregów czasowych jest model średniej ruchomości (MA): Xt mu At - theta1 A - theta2 A - cdots - thetaq A, gdzie (Xt) jest szeregiem czasowym (mu ) jest średnią serii, (A) są białymi warunkami hałasu i (theta1,, ldots,, thetaq) są parametrami modelu. Wartość (q) nazywana jest kolejnością modelu MA. Oznacza to, że model średniej ruchomości jest konceptualnie regresją liniową bieżącej wartości szeregu przed białym hałasem lub przypadkowymi wstrząsami jednej lub więcej poprzednich wartości szeregu. Przyjmuje się, że przypadkowe wstrząsy w każdym punkcie pochodzą z tego samego rozkładu, zwykle rozkładu normalnego, z położeniem przy zerze i stałej skali. Rozróżnienie w tym modelu polega na tym, że te przypadkowe wstrząsy są przesunięte na przyszłe wartości serii czasowej. Dopasowanie oszacowań MA jest bardziej skomplikowane niż w przypadku modeli AR, ponieważ nie można obserwować błędów. Oznacza to, że w miejsce liniowych najmniejszych kwadratów należy używać iteracyjnych nieliniowych procedur montażu. Modele MA mają również mniej oczywistą interpretację niż modele AR. Czasami ACF i PACF sugerują, że model MA byłby lepszym wyborem modelu, a czasami zarówno AR, jak i MA powinny być użyte w tym samym modelu (patrz punkt 6.4.4.5). Należy jednak pamiętać, że po zdefiniowaniu modelu warunek błędu powinien być niezależny i być zgodny ze standardowymi założeniami dla procesu jednoznacznego. Box i Jenkins popularyzowali podejście, które łączy średnią ruchomą i podejście autoregresywne w książce Analiza serii czasu: Prognozowanie i kontrola (Box, Jenkins i Reinsel, 1994). Chociaż zarówno podejście autoregresywne, jak i ruchome było już znane (i zostały pierwotnie przeanalizowane przez Yule), wkład Box i Jenkins w opracowywaniu systematycznej metodologii identyfikacji i oszacowania modeli, które mogłyby obejmować oba podejścia. To sprawia, że modele Box-Jenkins są potężną klasą modeli. Następne kilka sekcji omówi te modele szczegółowo. 8.4 Przenoszenie średnich modeli Zamiast używać przeszłych wartości zmiennej prognozowanej w regresji, model średniej ruchomości wykorzystuje poprzednie błędy prognozy w modelu regresywnym. y c t etta etta k etta, gdzie et jest białym szumem. Odnoszę się do tego jako model typu MA (q). Oczywiście nie obserwujemy wartości et, więc nie jest to regresja w zwykłym sensie. Zauważ, że każda wartość yt może być traktowana jako ważona średnia ruchoma ostatnich kilku błędów prognozy. Nie należy jednak mylić średnich ruchomej z ruchomej wygładzonej średniej, o której mówiliśmy w rozdziale 6. W celu oszacowania cyklu trendu wcześniejszych wartości wykorzystywany jest średnioroczny model prognozowania przyszłych wartości, podczas gdy ruchome średnie wygładzenie jest używane do szacowania cyklu trendu ostatnich wartości. Rysunek 8.6: Dwa przykłady danych z ruchomych średnich modeli o różnych parametrach. Lewo: MA (1) z y t 20e t 0.8e t-1. Po prawej: MA (2) z y t e t e t-1 0,8e t-2. W obu przypadkach, e t jest normalnie rozproszonym białym hałasem ze średnią zerem i wariancją. Rysunek 8.6 przedstawia niektóre dane z modelu MA (1) i modelu MA (2). Zmiana parametrów theta1, kropki, thetaq powodują, że różne wzorce serii czasowych. Podobnie jak w modelach autoregresywnych, wariancja warunku błędów et zmienia tylko skalę szeregu, a nie wzorców. Możliwe jest pisanie dowolnego stacjonarnego modelu AR (p) jako modelu MA (infty). Na przykład, używając powtórzonej podstawy, możemy to udowodnić za model AR (1): rozpocznij yt amp phi1y et amp phi1 (phi1y e) et amp phi12y phi1 i et phi fiordy phi12e phi1 i koniec amptext Pod warunkiem -1 lt phi1 lt 1, wartość phi1k będzie mniejsza, gdy k powiększy się. Więc ostatecznie otrzymujemy yt et phi1 e phi12 e phi13 e cdots, proces MA (infty). Wynik odwrotny utrzymuje się, jeśli wprowadzamy pewne ograniczenia parametrów MA. Następnie model MA nazywa się odwracalnym. Oznacza to, że możemy pisać dowolny proces odwracalny MA (q) jako proces AR (infty). Modele odwracalne nie tylko umożliwiają nam konwersję z modeli MA na modele AR. Mają także pewne właściwości matematyczne, które ułatwiają ich stosowanie w praktyce. Ograniczenia inwersji są podobne do ograniczeń stacjonarnych. Dla modelu MA (1): -1lttheta1lt1. Dla modelu MA (2): -1lttheta2lt1, theta2theta1 gt-1, theta1 - eta2l1. Bardziej skomplikowane warunki zachowują się dla qge3. Ponownie R zajmuje się tymi ograniczeniami podczas szacowania modeli.2.1 Ruchome modele średnie (modele MA) Modele serii czasowej znane jako modele ARIMA mogą obejmować terminy autoregresji i średnioroczne średnie ruchy. W pierwszym tygodniu dowiedzieliśmy się, że termin autoregresji w modelu szeregów czasowych dla zmiennej x t jest opóźnioną wartością x t. Na przykład terminem autoregresji 1 opóźnienia jest x t-1 (pomnożony przez współczynnik). Ta lekcja definiuje ruchome średnie terminy. Ruchoma średnia wersja w modelu szeregów czasowych jest błędem w przeszłości pomnożonym przez współczynnik. Niech (przewyższa N (0, sigma2w)), co oznacza, że w t są identycznie, niezależnie rozdzielane, każdy z normalnym rozkładem mającym średnią 0 i tę samą wariancję. Średni model średniej ruchomej, oznaczony symbolem MA (1) to (xt mu wt atta1w) Średni model ruchu średniego rzędu, oznaczony symbolem MA (2) to (xt mu wt atta1w theta2w) , oznaczone literą MA (q) jest (xt mc i k ta2t w kropki tetaqw) Uwaga. Wiele podręczników i programów definiuje model z negatywnymi znakami przed terminami. To nie zmienia ogólnych teoretycznych właściwości modelu, chociaż odwraca znaki algebraiczne oszacowanych wartości współczynników i (niezakłóconych) w formułach dla ACF i wariancji. Musisz sprawdzić oprogramowanie w celu sprawdzenia, czy użyto negatywnych lub pozytywnych oznaczeń w celu poprawnego zapisania szacowanego modelu. R używa pozytywnych oznaczeń w swoim modelu bazowym, tak jak tutaj. Właściwości teoretyczne serii czasowej z modelem MA (1) Należy pamiętać, że jedyną niższą wartością w teoretycznym ACF jest opóźnienie 1. Wszystkie inne autokorelacje wynoszą 0. Tak więc próbka ACF o znacznej autokorelacji tylko w punkcie 1 jest wskaźnikiem możliwego modelu MA (1). Dla zainteresowanych studentów, dowody dotyczące tych właściwości stanowią załącznik do niniejszego materiału informacyjnego. Przykład 1 Załóżmy, że model MA (1) wynosi x t 10 w t .7 w t-1. gdzie (nadwrażliwość N (0,1)). Współczynnik 1 0,7. Teoretyczny ACF podano w poniższym wykresie ACF. Przedstawiona fabuła jest teoretycznym ACF dla MA (1) z 1 0,7. W praktyce próbka zazwyczaj nie dostarcza tak wyraźnego wzorca. Używając R, symulujemy 100 wartości próbek przy użyciu modelu x t 10 w t .7 w t-1, gdzie w t iid N (0,1). W tej symulacji powstaje ciąg szeregowy danych przykładowych. Nie możemy wiele powiedzieć z tej fabuły. Poniżej znajduje się próbka ACF dla danych symulowanych. Widzimy skok w punkcie 1, a następnie ogólnie wartości nieistotne dla opóźnień 1. Pamiętaj, że próbka ACF nie jest zgodna z teoretycznym wzorem MA (1) leżącego u podstawy, co oznacza, że wszystkie autokorelacje w przypadku opóźnień 1 będą 0 Inna próbka miałaby nieco inną próbkę ACF pokazaną poniżej, ale najprawdopodobniej miałyby takie same cechy. Właściwości terapeutyczne serii czasowej z modelem MA (2) Dla modelu MA (2), właściwości teoretyczne są następujące: Należy zauważyć, że jedynymi wartościami niezonarnymi w teoretycznym ACF są opóźnienia 1 i 2. Autokorelacje dla wyższych opóźnień to 0 Więc próba ACF o istotnych autokorelacjach w przypadku opóźnień 1 i 2, ale nieistotne autokorelacje dla wyższych opóźnień wskazują na możliwy model MA (2). iid N (0,1). Współczynniki wynoszą 1 0,5 i 2 0,3. Ponieważ jest to MA (2), teoretyczny ACF będzie miał wartości inne niż z opóźnieniami 1 i 2. Wartości dwóch niezerowych autokorelacji to wykres A teoretycznej ACF. Jak prawie zawsze jest tak, dane próbki nie zachowują się tak doskonale jak teoria. Symulujemy n 150 wartości próbek dla modelu x t 10 w t .5 w t-1 .3 w t-2. gdzie w t iid N (0,1). Sporządza się szeregowy szereg danych. Podobnie jak w przypadku szeregów czasowych dla danych próbki MA (1), niewiele można powiedzieć o tym. Poniżej znajduje się próbka ACF dla danych symulowanych. Wzór jest typowy dla sytuacji, gdy model MA (2) może być użyteczny. Istnieją dwa statystycznie istotne skoki przy opóźnieniach 1 i 2, po których następują nieistotne wartości dla innych opóźnień. Zauważ, że z powodu błędu pobierania próbek próbka ACF nie pasowała dokładnie do teoretycznego wzoru. ACF dla modeli MA (q) Modeli Ogólną cechą modeli MA (q) jest to, że dla wszystkich pierwszych opóźnień q i autokorelacji 0 dla wszystkich luków gtq istnieją autokorelacje nie zerowe. Niepowtarzalność połączenia pomiędzy wartościami 1 i (rho1) w modelu MA (1). W modelu MA (1) dla dowolnej wartości 1. odwrotny 1 1 daje taką samą wartość jak dla przykładu, użyj 0,5 dla 1. a następnie użyj 1 (0.5) 2 dla 1. Otrzymasz (rho1) 0,4 w obu przypadkach. Aby zaspokoić teoretyczne ograniczenie zwane "invertibility". ograniczamy modele MA (1) do wartości z wartością bezwzględną mniejszą niż 1. W podanym przykładzie, 1 0,5 będzie dopuszczalną wartością parametru, podczas gdy 1 10,5 2 nie będzie. Odwrotność modeli MA Model macierzowy jest odwracalny, jeśli jest on algebraiczny, odpowiadający modelowi zbiegającemu się z nieskończonym modelem AR. Zbiegając się, rozumiemy, że współczynniki AR zmniejszają się do 0, gdy wracamy w czasie. Inwersja to ograniczenie zaprogramowane w oprogramowanie serii czasowej służące do oszacowania współczynników modeli z hasłami. To nie coś, co sprawdzamy w analizie danych. Dodatkowe informacje o ograniczeniu inwersji dla modeli MA (1) podano w dodatku. Uwagi dotyczące teorii zaawansowanej. W modelu MA (q) z określonym ACF jest tylko jeden model odwracalny. Warunkiem koniecznym do odwrócenia jest fakt, że współczynniki mają takie wartości, że równanie 1- 1 y-. - q y q 0 ma rozwiązania dla y, które leżą poza okręgiem jednostkowym. R dla przykładów W przykładzie 1 wykreślono teoretyczny ACF modelu x t 10 w t. 7w t-1. a następnie symulowane n 150 wartości z tego modelu i wykreślono szereg próbkowania i próbkę ACF dla danych symulowanych. Polecenia R służące do sporządzenia teoretycznej ACF to: acfma1ARMAacf (mac (0.7), lag. max10) 10 opóźnień ACF dla MA (1) z theta1 0,7 lags0: 10 tworzy zmienną o nazwie opóźnienia w zakresie od 0 do 10 (h0) dodaje osi poziomej do wykresu Pierwsze polecenie określa ACF i zapisuje je w obiekcie (np. o nazwie acfma1 (nasz wybór nazwy). Polecenie wydruku (trzecie polecenie) powoduje błędy w porównaniu do wartości ACF dla opóźnień 1 do 10. Parametr ylab etykietuje na osi y, a główny parametr umieszcza tytuł na wykresie. Aby zobaczyć wartości liczbowe ACF, użyj komendy acfma1. Symulacje i wykresy zostały wykonane za pomocą następujących poleceń. xcarc. sim (n150, lista (mac (0.7))) Symuluje n 150 wartości z MA (1) xxc10 dodaje 10 do średniej 10. Domyślnie domyślne symulacje to 0. wykres (x, typeb, mainSimulated MA (1) data) acf (x, xlimc (1,10), mainACF dla symulowanych danych próbki) W przykładzie 2 wymyśliliśmy teoretyczny ACF modelu xt 10 wt5 w t-1 .3 w t-2. a następnie symulowane n 150 wartości z tego modelu i wykreślono szereg próbkowania i próbkę ACF dla danych symulowanych. Stosowane komendy R to acfma2ARMAacf (mac (0.5.0.3), lag. max10) acfma2 lags0: 10 (lags, acfma2, xlimc (1,10), ylabr, typh, główny ACF dla MA (2) z theta1 0,5, (x, x, x, x, x, x, x, x, x, x, x, y) mainACF dla symulowanych danych MA (2)) Dodatek: Dowód właściwości MA (1) Dla zainteresowanych studentów są dowody na teoretyczne właściwości modelu MA (1). Variance: (text (xt) text (mu wt theta1 w) tekst 0 (wt) tekst (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Kiedy h 1, poprzedni wyrażenie 1 w 2. W przypadku dowolnego h2, poprzednie wyrażenie 0 Powodem jest to, że z definicji niezależności wag. E (w k w j) 0 dla dowolnej kj. Ponadto, ponieważ w t oznaczają 0, E (wjwj) E (wj2) w2. W serii czasów Zastosuj ten wynik, aby uzyskać ACF podany powyżej. Inwersyjny model MA to taki, który można zapisać jako model AR nieskończony, który zbiega się tak, że współczynniki AR zbiegają się do 0, gdy poruszamy się nieskończenie wstecz w czasie. Dobrze wykazać inwersję modelu MA (1). Następnie zastępujemy relację (2) dla t-1 w równaniu (1) (3) (zt wt theta1 (z-taleta) wt theta1z-tal2w) W czasie t-2. (2) staje się zastępującym związek (4) dla t-2 w równaniu (3) (zt wt theta1 z - theta21w wt theta1z - eta21 (zteta1w) wt theta1z - eta12z theta31w) Gdybyśmy kontynuowali ( nieskończoność) dostaniemy model nieskończonej AR (zt wt theta1 z - theta21z theta31z-theta41z dots) Zauważ jednak, że jeśli 1 1, współczynniki mnożące opóźnienia z będą wzrastać (nieskończenie) w rozmiarze, gdy wracamy z powrotem czas. Aby temu zapobiec, potrzebujemy 1 lt1. Jest to warunek odwracalnego modelu MA (1). Model nieskoordynowanych zamówień MA W trzecim tygodniu dobrze widać, że model AR (1) można przekształcić w model MA nieskończonego rzędu: (xt - mu wt phi1w phi21w kropki phik1 w kropkach sumy fij1w) To sumowanie przeszłych hałasu białego jest znane jako przyczynę reprezentacji AR (1). Innymi słowy, x t jest specjalnym rodzajem magistra z nieskończoną liczbą terminów z czasem. Nazywa się to nieskończoną kolejnością MA lub MA (). Kończy się rozkazem MA jest nieskończona kolejność AR, a dowolny porządek AR jest rzędem nieskończonym rzędu. Przypomnijmy sobie w tygodniu 1, zauważyliśmy, że wymóg stacjonarnego AR (1) polega na tym, że 1 lt1. Pozwala obliczyć Var (xt) używając reprezentacji przyczynowej. W ostatnim kroku używa się podstawowych faktów dotyczących serii geometrycznych, które wymagają (phi1lt1), w przeciwnym razie serie rozbieżności. Nawigacja
Comments
Post a Comment